Analysis of Error Floors for Non-binary LDPC Codes over General Linear Group through q-Ary Memoryless Symmetric Channels

نویسندگان

  • Takayuki Nozaki
  • Kenta Kasai
  • Kohichi Sakaniwa
چکیده

In this paper, we compare the decoding error rates in the error floors for non-binary low-density parity-check (LDPC) codes over general linear groups with those for non-binary LDPC codes over finite fields transmitted through the q-ary memoryless symmetric channels under belief propagation decoding. To analyze non-binary LDPC codes defined over both the general linear group GL(m, F2) and the finite field F2m , we investigate non-binary LDPC codes defined over GL(m3, F2m4 ). We propose a method to lower the error floors for non-binary LDPC codes. In this analysis, we see that the non-binary LDPC codes constructed by our proposed method defined over general linear group have the same decoding performance in the error floors as those defined over finite field. The non-binary LDPC codes defined over general linear group have more choices of the labels on the edges which satisfy the condition for the optimization. key words: non-binary LDPC code, error floor, q-ary memoryless symmetric channel, belief propagation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Dimensional Bounds on Zm and Binary LDPC Codes with Belief Propagation Decoders: Stability Conditions on Zm Codes and Cutoff Rate Analysis on Non-symmetric Binary Channels

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Z m and binary LDPC codes, assuming belief propagation decoding on memoryless channels. Two noise measures will be considered: the Bhattacharyya noise parameter and the soft bit value for a MAP decoder on the uncoded channel. For Z m LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/...

متن کامل

Density Evolution for Asymmetric Memoryless Channels: The Perfect Projection Condition and the Typicality of the Linear LDPC Code Ensemble

Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussia...

متن کامل

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Gallager-Type Bounds for Non-Binary Linear Block Codes over Memoryless Symmetric Channels

The performance of non-binary linear block codes is studied in this paper via the derivation of new upper bounds on the error probability under ML decoding. The transmission of these codes is assumed to take place over a memoryless and symmetric channel. The new bounds, which rely on the Gallager bounding technique, are applied to expurgated ensembles of non-binary and regular low-density parit...

متن کامل

A Fresh Look at Coding for q-ary Symmetric Channels

This paper studies coding schemes for the q-ary symmetric channel based on binary low-density parity-check (LDPC) codes that work for any alphabet size q = 2, m ∈ N, thus complementing some recently proposed packet-based schemes requiring large q. First, theoretical optimality of a simple layered scheme is shown, then a practical coding scheme based on a simple modification of standard binary L...

متن کامل

Typicality of the Linear Code among the LDPC Coset Code Ensemble

Density evolution (DE) is one of the most powerful analytical tools for low-density parity-check (LDPC) codes on memoryless binary-input/symmetric-output channels. The case of non-symmetric channels is tackled either by the LDPC coset code ensemble (a channel symmetrizing argument) or by the generalized DE for linear codes on non-symmetric channels. Existing simulations show that the performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 95-A  شماره 

صفحات  -

تاریخ انتشار 2012